Efficient inference in stochastic block models with vertex labels

Clara Stegehuis 1 Laurent Massoulié 2, 3
3 DYOGENE - Dynamics of Geometric Networks
Inria de Paris, CNRS - Centre National de la Recherche Scientifique : UMR 8548, DI-ENS - Département d'informatique de l'École normale supérieure
Abstract : We study the stochastic block model with twocommunities where vertices contain side information in the formof a vertex label. These vertex labels may have arbitrary labeldistributions, depending on the community memberships. Weanalyze a linearized version of the popular belief propagationalgorithm. We show that this algorithm achieves the highestaccuracy possible whenever a certain function of the networkparameters has a unique fixed point. Whenever this function hasmultiple fixed points, the belief propagation algorithm may notperform optimally. We show that increasing the information inthe vertex labels may reduce the number of fixed points andhence lead to optimality of belief propagation.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-02427854
Contributor : Laurent Massoulié <>
Submitted on : Saturday, January 4, 2020 - 12:32:13 PM
Last modification on : Monday, January 13, 2020 - 1:12:24 AM

Links full text

Identifiers

Collections

Citation

Clara Stegehuis, Laurent Massoulié. Efficient inference in stochastic block models with vertex labels. IEEE Transactions on Network Science and Engineering, IEEE, 2019, pp.1. ⟨10.1109/TNSE.2019.2913949⟩. ⟨hal-02427854⟩

Share

Metrics

Record views

17