Pyrimidine (6‐4) pyrimidone photoproducts in UVA‐irradiated DNA: photosensitization or photoisomerization? - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue ChemPhotoChem Année : 2020

Pyrimidine (6‐4) pyrimidone photoproducts in UVA‐irradiated DNA: photosensitization or photoisomerization?

Résumé

Formation of pyrimidine dimers in DNA is a major initiating event in the induction of skin cancer. Model experiments suggest that, upon absorption of UVA, one type of dimers induced by UVB, the pyrimidine (6‐4) pyrimidone photoproducts, photosensitizes the formation of mutagenic cyclobutane pyrimidine dimers by triplet ‐triplet energy transfer (TTET). We investigated whether this photoreaction actually took place when 64PP were located within a DNA duplex rather than added as external sensitizers like in available data. Our results show that this process is not detectable in DNA and double‐stranded oligonucleotides exposed to a combination of UVB and UVA. TTET could only be observed, as a very minor photoreaction, in a short single‐stranded oligonucleotide bearing a 64PP. It may be concluded that 64PP‐mediated TTET does not significantly contribute to UV‐induced DNA damage. In contrast, the photoisomerization of 64PP into their Dewar valence isomers is very efficient.
Fichier principal
Vignette du fichier
2019 ChemPhotoChem Douki 64PP UVA HAL.pdf (1021.94 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02417294 , version 1 (14-01-2020)

Identifiants

Citer

Thierry Douki. Pyrimidine (6‐4) pyrimidone photoproducts in UVA‐irradiated DNA: photosensitization or photoisomerization?. ChemPhotoChem, 2020, 4, pp.294-299. ⟨10.1002/cptc.201900280⟩. ⟨hal-02417294⟩
64 Consultations
265 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More