Skip to Main content Skip to Navigation
Conference papers

Lower and Upper Bounds on the Randomness Complexity of Private Computations of AND

Abstract : We consider multi-party information-theoretic private protocols, and specifically their randomness complexity. The randomness complexity of private protocols is of interest both because random bits are considered a scarce resource, and because of the relation between that complexity measure and other complexity measures of boolean functions such as the circuit size or the sensitivity of the function being computed [12, 17]. More concretely, we consider the randomness complexity of the basic boolean function and, that serves as a building block in the design of many private protocols. We show that and cannot be privately computed using a single random bit, thus giving the first non-trivial lower bound on the 1-private randomness complexity of an explicit boolean function, f:{0,1}n→{0,1} . We further show that the function and, on any number of inputs n (one input bit per player), can be privately computed using 8 random bits (and 7 random bits in the special case of n=3 players), improving the upper bound of 73 random bits implicit in [17]. Together with our lower bound, we thus approach the exact determination of the randomness complexity of and. To the best of our knowledge, the exact randomness complexity of private computation is not known for any explicit function (except for xor, which is trivially 1-random, and for several degenerate functions).
Document type :
Conference papers
Complete list of metadata

Cited literature [23 references]  Display  Hide  Download
Contributor : Damien Vergnaud <>
Submitted on : Sunday, May 10, 2020 - 12:45:21 PM
Last modification on : Tuesday, March 23, 2021 - 9:28:03 AM


Files produced by the author(s)



Eyal Kushilevitz, Rafail Ostrovsky, Emmanuel Prouff, Adi Rosén, Adrian Thillard, et al.. Lower and Upper Bounds on the Randomness Complexity of Private Computations of AND. TCC 2019 - 17th International Conference on Theory of Cryptography, Dec 2019, Nuremberg, Germany. pp.386-406, ⟨10.1007/978-3-030-36033-7_15⟩. ⟨hal-02395052⟩



Record views


Files downloads