Skip to Main content Skip to Navigation
Journal articles

gH625 Cell-Penetrating Peptide Promotes the Endosomal Escape of Nanovectorized siRNA in a Triple-Negative Breast Cancer Cell Line

Abstract : The use of small interfering RNA (siRNA) to regulate oncogenes appears as a promising strategy in the context of cancer therapy, especially if they are vectorized by a smart delivery system. In this study, we investigated the cellular trafficking of a siRNA nanovector (called CS-MSN) functionalized with the cell-penetrating peptide gH625 in a triple-negative breast cancer model. With complementary techniques, we showed that siRNA nanovectors were internalized by both clathrin- and caveolae-mediated endocytosis. The presence of gH625 at the surface of the siRNA nanovector did not modify the entry pathway of CS-MSN, but it increased the amount of siRNA found inside the cells. Results suggested an escape of siRNA from endosomes, which is enhanced by the presence of the peptide gH625, whereas nanoparticles continued their trafficking into lysosomes. The efficiency of CS-MSN to inhibit the GFP in MDA-MB-231 cells was 1.7-fold higher than that of the nanovectors without gH625.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-02389171
Contributor : Laurie Lajoie Connect in order to contact the contributor
Submitted on : Monday, December 2, 2019 - 1:45:18 PM
Last modification on : Wednesday, December 4, 2019 - 2:36:03 PM

Identifiers

Collections

Citation

Sanaa Ben Djemaa, Katel Hervé-Aubert, Laurie Lajoie, Annarita Falanga, Stefania Galdiero, et al.. gH625 Cell-Penetrating Peptide Promotes the Endosomal Escape of Nanovectorized siRNA in a Triple-Negative Breast Cancer Cell Line. Biomacromolecules, American Chemical Society, 2019, 20 (8), pp.3076-3086. ⟨10.1021/acs.biomac.9b00637⟩. ⟨hal-02389171⟩

Share

Metrics

Record views

94