Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2019

Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis

Matthew Glasscott
  • Fonction : Auteur
Andrew Pendergast
  • Fonction : Auteur
Sondrica Goines
  • Fonction : Auteur
Anthony Bishop
  • Fonction : Auteur
Andy Hoang
  • Fonction : Auteur

Résumé

Creative approaches to the design of catalytic nanomaterials are necessary in achieving environmentally sustainable energy sources. Integrating dissimilar metals into a single nanoparticle (NP) offers a unique avenue for customizing catalytic activity and maximizing surface area. Alloys containing five or more equimolar components with a disordered, amorphous microstructure, referred to as High-Entropy Metallic Glasses (HEMGs), provide tunable catalytic performance based on the individual properties of incorporated metals. Here, we present a generalized strategy to electrosynthesize HEMG-NPs with up to eight equimolar components by confining multiple metal salt precursors to water nanodroplets emulsified in dichloroethane. Upon collision with an electrode, alloy NPs are electrodeposited into a disordered microstructure, where dissimilar metal atoms are proximally arranged. We also demonstrate precise control over metal stoichiometry by tuning the concentration of metal salt dissolved in the nanodroplet. The application of HEMG-NPs to energy conversion is highlighted with electrocatalytic water splitting on CoFeLaNiPt HEMG-NPs.
Fichier principal
Vignette du fichier
s41467-019-10303-z.pdf (1.8 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02389127 , version 1 (27-12-2020)

Identifiants

Citer

Matthew Glasscott, Andrew Pendergast, Sondrica Goines, Anthony Bishop, Andy Hoang, et al.. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nature Communications, 2019, 10 (1), ⟨10.1038/s41467-019-11219-4⟩. ⟨hal-02389127⟩
31 Consultations
64 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More