Pushable chromatic number of graphs with degree constraints

Abstract : Pushable homomorphisms and the pushable chromatic number $\chi_p$ of oriented graphs were introduced by Klostermeyer and MacGillivray in 2004. They notably observed that, for any oriented graph $\overrightarrow{G}$, we have $\chi_p(\overrightarrow{G}) \leq \chi_o(\overrightarrow{G}) \leq 2 \chi_p(\overrightarrow{G})$, where $\chi_o(\overrightarrow{G})$ denotes the oriented chromatic number of $\overrightarrow{G}$. This stands as first general bounds on $\chi_p$. This parameter was further studied in later works. This work is dedicated to the pushable chromatic number of oriented graphs fulfilling particular degree conditions. For all $\Delta \geq 29$, we first prove that the maximum value of the pushable chromatic number of an oriented graph with maximum degree $\Delta$ lies between $2^{\frac{\Delta}{2}-1}$ and $(\Delta-3) \cdot (\Delta-1) \cdot 2^{\Delta-1} + 2$ which implies an improved bound on the oriented chromatic number of the same family of graphs. For subcubic oriented graphs, that is, when $\Delta \leq 3$, we then prove that the maximum value of the pushable chromatic number is~$6$ or~$7$. We also prove that the maximum value of the pushable chromatic number of oriented graphs with maximum average degree less than~$3$ lies between~$5$ and~$6$. The former upper bound of~$7$ also holds as an upper bound on the pushable chromatic number of planar oriented graphs with girth at least~$6$.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02373515
Contributor : Julien Bensmail <>
Submitted on : Thursday, November 21, 2019 - 9:33:08 AM
Last modification on : Saturday, November 23, 2019 - 1:39:33 AM

Files

main.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02373515, version 1
  • ARXIV : 1911.09909

Citation

Julien Bensmail, Sandip Das, Soumen Nandi, Théo Pierron, Soumyajit Paul, et al.. Pushable chromatic number of graphs with degree constraints. 2019. ⟨hal-02373515⟩

Share

Metrics

Record views

41

Files downloads

30