Skip to Main content Skip to Navigation
Journal articles

Modeling other minds: Bayesian inference explains human choices in group decision-making

Abstract : To make decisions in a social context, humans have to predict the behavior of others, an ability that is thought to rely on having a model of other minds known as "theory of mind." Such a model becomes especially complex when the number of people one simultaneously interacts with is large and actions are anonymous. Here, we present results from a group decision-making task known as the volunteer's dilemma and demonstrate that a Bayesian model based on partially observable Markov decision processes outperforms existing models in quantitatively predicting human behavior and outcomes of group interactions. Our results suggest that in decision-making tasks involving large groups with anonymous members, humans use Bayesian inference to model the "mind of the group," making predictions of others' decisions while also simulating the effects of their own actions on the group's dynamics in the future.
Document type :
Journal articles
Complete list of metadatas

Cited literature [56 references]  Display  Hide  Download
Contributor : Jean-Claude Dreher <>
Submitted on : Friday, November 6, 2020 - 2:23:01 PM
Last modification on : Tuesday, November 17, 2020 - 9:25:53 AM


Publisher files allowed on an open archive




Koosha Khalvati, Seongmin Park, Saghar Mirbagheri, Remi Philippe, Mariateresa Sestito, et al.. Modeling other minds: Bayesian inference explains human choices in group decision-making. Science Advances , American Association for the Advancement of Science (AAAS), 2019, 5 (11), pp.eaax8783. ⟨10.1126/sciadv.aax8783⟩. ⟨hal-02353079⟩



Record views


Files downloads