Escape of a Driven Quantum Josephson Circuit into Unconfined States

Abstract : Josephson circuits have been ideal systems with which to study complex nonlinear dynamics that can lead to chaotic behavior and instabilities. More recently, Josephson circuits in the quantum regime, particularly in the presence of microwave drives, have demonstrated their ability to emulate a variety of Hamiltonians that are useful for the processing of quantum information. In this paper, we show that these drives lead to an instability that results in the escape of the circuit mode into states that are not confined by the Josephson cosine potential. We observe this escape in a ubiquitous circuit: a transmon embedded in a 3D cavity. When the transmon occupies these free-particle-like states, the circuit behaves as though the junction had been removed and all nonlinearities are lost. This work deepens our understanding of strongly driven Josephson circuits, which is important for fundamental and application perspectives, such as the engineering of Hamiltonians by parametric pumping.
Document type :
Journal articles
Complete list of metadatas
Contributor : Anne-Cécile Verzier <>
Submitted on : Thursday, October 17, 2019 - 2:04:27 PM
Last modification on : Saturday, November 9, 2019 - 9:44:01 PM

Links full text



Raphaël Lescanne, Lucas Verney, Quentin Ficheux, Michel Devoret, Benjamin Huard, et al.. Escape of a Driven Quantum Josephson Circuit into Unconfined States. Physical Review Applied, American Physical Society, 2019, 11 (1), pp.014030. ⟨10.1103/PhysRevApplied.11.014030⟩. ⟨hal-02318762⟩



Record views