Primary frequency H ∞ control in stand-alone microgrids with storage units: A robustness analysis confirmed by real-time experiments

Abstract : This paper proposes a robust control design approach for primary frequency regulation in a diesel-photovoltaic (PV)-storage hybrid power generation system operating in stand-alone mode. Based on real-time digital simulators, namely RT-LAB® and dSPACE®, a rapid-prototyping test bench composed of a real supercapacitor-based energy storage system (ESS) and an emulated diesel-PV-load grid is developed in order to experimentally validate this frequency control strategy under realistic operating conditions. Starting from given desired dynamic specifications, a multi-variable controller is designed via the linear matrix inequalities (LMI) method. In the second step, uncertainty in the steady-state value of the supercapacitor state of charge (SoC) is considered and a robustness analysis using mu-analysis is performed in order to determine its maximum variation range for which the imposed closed-loop performances are respected for the considered operating point. MATLAB®/Simulink® time-domain simulations and real-time experiments show the effectiveness of the proposed robust control approach. Then, a series of real-time experiments are performed to validate the controller’s robustness and performance in the presence of various load disturbances and uncertainty.
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-02273502
Contributor : Antoneta Iuliana Bratcu <>
Submitted on : Thursday, August 29, 2019 - 8:18:25 AM
Last modification on : Wednesday, October 23, 2019 - 3:28:43 PM

Identifiers

Collections

Citation

Quang Linh Lam, Antoneta Iuliana Bratcu, Delphine Riu, Cédric Boudinet, Antoine Labonne, et al.. Primary frequency H ∞ control in stand-alone microgrids with storage units: A robustness analysis confirmed by real-time experiments. International Journal of Electrical Power and Energy Systems, Elsevier, 2020, 115, pp.105507. ⟨10.1016/j.ijepes.2019.105507⟩. ⟨hal-02273502⟩

Share

Metrics

Record views

196