Experimental investigation of $\alpha$-condensation in light nuclei - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Phys.Rev.C Année : 2019

Experimental investigation of $\alpha$-condensation in light nuclei

Jack Bishop
  • Fonction : Auteur
Tzany Kokalova
  • Fonction : Auteur
Martin Freer
  • Fonction : Auteur
L. Acosta
  • Fonction : Auteur
S. Bailey
  • Fonction : Auteur
G. Cardella
  • Fonction : Auteur
N. Curtis
  • Fonction : Auteur
E. de Filippo
  • Fonction : Auteur
D. Dell'Aquila
  • Fonction : Auteur
S. de Luca
  • Fonction : Auteur
L. Francalanza
  • Fonction : Auteur
B. Gnoffo
  • Fonction : Auteur
G. Lanzalone
  • Fonction : Auteur
I. Lombardo
  • Fonction : Auteur
N.S. Martorana
  • Fonction : Auteur
S. Norella
  • Fonction : Auteur
A. Pagano
  • Fonction : Auteur
E.V. Pagano
  • Fonction : Auteur
M. Papa
  • Fonction : Auteur
S. Pirrone
  • Fonction : Auteur
G. Politi
  • Fonction : Auteur
F. Rizzo
  • Fonction : Auteur
P. Russotto
  • Fonction : Auteur
L. Quattrocchi
  • Fonction : Auteur
R. Smith
  • Fonction : Auteur
I. Stefan
A. Trifiro
  • Fonction : Auteur
M. Trimarchi
  • Fonction : Auteur
M. Vigilante
  • Fonction : Auteur
C. Wheldon
  • Fonction : Auteur

Résumé

Background: Near-threshold α-clustered states in light nuclei have been postulated to have a structure consisting of a diffuse gas of α particles which condense into the 0s orbital. Experimental evidence for such a dramatic phase change in the structure of the nucleus has not yet been observed. Purpose: To understand the role of α condensation in light nuclei experimentally. Method: To examine signatures of this α condensation, a compound nucleus reaction using 160-, 280-, and 400-MeV O16 beams impinging on a carbon target was used to investigate the C12(O16,7α) reaction. This permits a search for near-threshold states in the α-conjugate nuclei up to Mg24. Results: Events up to an α-particle multiplicity of seven were measured and the results were compared to both an extended Hauser-Feshbach calculation and the Fermi breakup model. The measured multiplicity distribution exceeded that predicted from a sequential decay mechanism and had a better agreement with the multiparticle Fermi breakup model. Examination of how these 7α final states could be reconstructed to form Be8 and C12(02+) showed a quantitative difference in which decay modes were dominant compared to the Fermi breakup model. No new states were observed in O16, Ne20, and Mg24 due to the effect of the N-α penetrability suppressing the total α-particle dissociation decay mode. Conclusion: The reaction mechanism for a high-energy compound nucleus reaction can only be described by a hybrid of sequential decay and multiparticle breakup. Highly α-clustered states were seen which did not originate from simple binary reaction processes. Direct investigations of near-threshold states in N-α systems are inherently impeded by the Coulomb barrier prohibiting the observation of states in the N-α decay channel. No evidence of a highly clustered 15.1-MeV state in O16 was observed from [Si★28,C12(02+)]O16(06+) when reconstructing the Hoyle state from three α particles. Therefore, no experimental signatures for α condensation were observed.

Dates et versions

hal-02223010 , version 1 (01-08-2019)

Identifiants

Citer

Jack Bishop, Tzany Kokalova, Martin Freer, L. Acosta, M. Assie, et al.. Experimental investigation of $\alpha$-condensation in light nuclei. Phys.Rev.C, 2019, 100 (3), pp.034320. ⟨10.1103/PhysRevC.100.034320⟩. ⟨hal-02223010⟩
25 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More