Skip to Main content Skip to Navigation
Conference papers

Laser induced fluorescence spectroscopy in the void region of a nanoparticle forming plasma

Abstract : Huge quantities of nanoparticles can strongly modify plasma properties [1, 2] by the trapping of free electrons at their surface [3]. This provokes an increase in the electron temperature [4, 5] and, in return, the entire chemistry is affected. Often plasma instabilities can be observed in nanodusty plasmas, some of them on time scales visible to the human eye [6, 7]. Because instabilities are a tempo-spatial phenomenon that can evolve on short time scales, adequate techniques to examine their nature are rare. In this study laser induced fluorescence [8] and absorption [9] spectroscopy were used to monitor the evolution of argon metastable atoms in a low pressure argon RF plasma. The growth of dense nanoparticle clouds is achieved from sputtering melamine-formaldehyde from the reactor walls and electrodes. The spectroscopic data are correlated with the pressure evolution and discharge current [10] in order to investigate the impact of localized effects, like void formation, on the global process parameters. [1] A. M. Hinz et al., J. Phys. D: Appl. Phys. 48 (2015) 055203 [2] M. Mikikian et al., Pure Appl. Chem., 83 (2010) pp. 1273-7282 [3] T. Wegner et al., Appl. Phys. Lett. 108 (2016) 063108 [4] V. Masserau-Guilbaud et al., IEEE Transactions on Plasma Science 41 (2013) pp. 816 [5] A. A. Fridman et al., J. Appl. Phys. 79 (1996) 1303
Complete list of metadatas
Contributor : Sylvain Iséni <>
Submitted on : Friday, July 19, 2019 - 10:31:49 AM
Last modification on : Tuesday, May 5, 2020 - 7:58:02 PM


  • HAL Id : hal-02189164, version 1



Erik von Wahl, Sylvain Iséni, Thomas Lecas, Titaina Gibert, Sedina Tsikata, et al.. Laser induced fluorescence spectroscopy in the void region of a nanoparticle forming plasma. 1e Rencontres Scientifiques Plasmas Froids et Lasers, Nov 2019, Toulouse, France. ⟨hal-02189164⟩



Record views