S. Baccianella, A. Esuli, and F. Sebatiani, Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining, Proceedings of the Seventh conference on International Language Resources and Evaluation, pp.2200-2204, 2010.

N. Barbieri, F. Bonchi, and G. Manco, Topic-aware social influence propagation models, Knowledge and Information Systems, vol.37, issue.3, pp.555-584, 2013.

R. Baumeister, E. Bratslavsky, C. Finkenauer, and K. Vohs, Bad is stronger than good, Review of General Psychology, vol.5, issue.4, pp.323-270, 2001.

D. Chen, L. Lü, M. S. Shang, Y. C. Zhang, and T. Zhou, Identifying influential nodes in complex networks, Physica A: Statistical mechanics and its applications, vol.391, issue.4, pp.1777-1787, 2012.

W. Chen, A. Collins, R. Cummings, T. Ke, Z. Liu et al., Influence maximization in social networks when negative opinions may emerge and propagate, Procedings of SIAM SDM, pp.379-390, 2011.

C. M. Cheung and M. K. Lee, Online consumer reviews: Does negative electronic word-of-mouth hurt more?, Proceeding of the fourteenth americas conference on information systems, p.143, 2008.

A. P. Dempster, Upper and Lower probabilities induced by a multivalued mapping, Annals of Mathematical Statistics, vol.38, pp.325-339, 1967.

P. Domingos and M. Richardson, Mining the network value of customers, Proceedings of KDD'01, pp.57-66, 2001.

C. Gao, D. Wei, Y. Hu, S. Mahadevan, and Y. Deng, A modified evidential methodology of identifying influential nodes in weighted networks, Physica A, vol.392, issue.21, pp.5490-5500, 2013.

J. Goldenberg, B. Libai, and E. Muller, Talk of the network: A complex systems look at the underlying process of word-of-mouth, Marketing Letters, vol.12, issue.3, pp.211-223, 2001.

A. Goyal, F. Bonchi, and L. V. Lakshmanan, A data-based approach to social influence maximization, Proceedings of VLDB Endowment, pp.73-84, 2012.

M. Granovetter, Threshold models of collective behavior. American journal of sociology pp, pp.1420-1443, 1978.

S. Jendoubi, M. Chebbah, and A. Martin, Evidential independence maximization on twitter network, Belief Functions: Theory and Applications, pp.121-128, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01879620

S. Jendoubi, A. Martin, L. Liétard, H. Ben-hadj, and B. Ben-yaghlane, Maximizing positive opinion influence using an evidential approach, Poceeding of the 12th international FLINS conference, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01380348

S. Jendoubi, A. Martin, L. Liétard, H. Ben-hadj, and B. Ben-yaghlane, Two evidential data based models for influence maximization in twitter, Knowledge-Based Systems, vol.121, pp.58-70, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01435733

S. Jendoubi, A. Martin, L. Liétard, and B. Ben-yaghlane, Classification of message spreading in a heterogeneous social network, Proceeding of IPMU, pp.66-75, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01108020

S. Jendoubi, A. Martin, L. Liétard, B. Ben-yaghlane, and H. Ben-hadj, Dynamic time warping distance for message propagation classification in twitter, Proceeding of ECSQARU, pp.419-428, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01445443

S. Jurvetson, What exactly is viral marketing? Red Herring 78, pp.110-112, 2000.

D. Kempe, J. Kleinberg, and E. Tardos, Maximizing the spread of influence through a social network, Proceedings of KDD'03, pp.137-146, 2003.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Vanbriesen et al., Cost-effective outbreak detection in networks, Proceedings of KDD'07, pp.420-429, 2007.

D. Li, Z. M. Xu, N. Chakraborty, A. Gupta, K. Sycara et al., Polarity related influence maximization in signed social networks, PLoS ONE, vol.9, issue.7, p.102199, 2014.

Y. M. Li, C. Y. Lai, and C. W. Chen, Discovering influencers for marketing in the blogosphere, Information Sciences, vol.181, issue.23, pp.5143-5157, 2011.

Q. Liu, B. Xiang, N. J. Yuan, E. Chen, H. Xiong et al., An influence propagation view of PageRank, ACM Transactions on Knowledge Discovery from Data, vol.11, issue.3, pp.1-30, 2017.

S. A. Moosavi, M. Jalali, N. Misaghian, S. Shamshirband, and M. H. Anisi, Community detection in social networks using user frequent pattern mining, Knowledge and Information Systems, vol.51, issue.1, pp.159-186, 2017.

R. Narayanam and A. A. Nanavati, Design of viral marketing strategies for product cross-sell through social networks, Knowledge and Information Systems, vol.39, issue.3, pp.609-641, 2014.

M. E. Newman, Networks: An introduction, 2010.

G. Shafer, A mathematical theory of evidence, 1976.

P. Smets and R. Kennes, The Transferable Belief Model, Artificial Intelligent, vol.66, pp.191-234, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01185821

S. E. Taylor, Asymmetrical effects of positive and negative events: the mobilization-minimization hypothesis, Psychological bulletin, vol.1, issue.110, pp.67-85, 1991.

D. Wei, X. Deng, X. Zhang, Y. Deng, and S. Mahadeven, Identifying influential nodes in weighted networks based on evidence theory, Physica A, vol.392, issue.10, pp.2564-2575, 2013.

B. Xiang, Q. Liu, E. Chen, H. Xiong, Y. Zheng et al., Pagerank with priors: An influence propagation perspective, Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp.2740-2746, 2013.

J. Yang, C. Liu, M. Teng, J. Chen, and H. Xiong, A unified view of social and temporal modeling for b2b marketing campaign recommendation

, IEEE Transactions on Knowledge and Data Engineering, vol.30, issue.5, pp.810-823, 2018.

H. Zhang, T. N. Dinh, and M. T. Thai, Maximizing the spread of positive influence in online social networks, Proceedings of ICDCS, pp.317-326, 2013.

K. Zhou, A. Martin, Q. Pan, and Z. G. Liu, Median evidential c-means algorithm and its application to community detection. Knowledge-Based Systems 74, pp.69-88, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01100902

, Siwar Jendoubi joined the LISTIC Laboratory for 18 months as postdoctoral researcher. Her research interests are mainly related to information fusion, uncertainty management, machine learning, social network analysis and tree species recognition, Siwar Jendoubi is a researcher at LARODEC Laboratory. She received a PhD degree, 2012.

, His research interests are mainly related to the belief functions with applications on social networks and crowdsourcing. He is author of numerous papers and invited talks. He supervised numerous Phd students, Pr. Arnaud Martin is the founder in 2010 of the Belief Functions and Applications Society (BFAS) (www.bfasociety.org). From, 1998.