Two Evidential Data Based Models for Influence Maximization in Twitter

Abstract : Influence maximization is the problem of selecting a set of influential users in the social network. Those users could adopt the product and trigger a large cascade of adoptions through the " word of mouth " effect. In this paper, we propose two evidential influence maximization models for Twitter social network. The proposed approach uses the theory of belief functions to estimate users influence. Furthermore, the proposed influence estimation measure fuses many influence aspects in Twitter, like the importance of the user in the network structure and the popularity of user's tweets (messages). In our experiments, we compare the proposed solutions to existing ones and we show the performance of our models.
Type de document :
Article dans une revue
Knowledge-Based Systems, Elsevier, 2017, <10.1016/j.knosys.2017.01.014>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01435733
Contributeur : Arnaud Martin <>
Soumis le : dimanche 15 janvier 2017 - 15:29:10
Dernière modification le : jeudi 15 juin 2017 - 09:08:49
Document(s) archivé(s) le : dimanche 16 avril 2017 - 12:24:18

Fichiers

InfluenceMaximizationV008.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Siwar Jendoubi, Arnaud Martin, Ludovic Liétard, Ben Hend, Ben Boutheina. Two Evidential Data Based Models for Influence Maximization in Twitter. Knowledge-Based Systems, Elsevier, 2017, <10.1016/j.knosys.2017.01.014>. <hal-01435733>

Partager

Métriques

Consultations de
la notice

177

Téléchargements du document

88