Optimal parameter choices via precise black-box analysis

Abstract : It has been observed that some working principles of evolutionary algorithms, in particular, the influence of the parameters, cannot be understood from results on the asymptotic order of the runtime, but only from more precise results. In this work, we complement the emerging topic of precise runtime analysis with a first precise complexity theoretic result. Our vision is that the interplay between algorithm analysis and complexity theory becomes a fruitful tool also for analyses more precise than asymptotic orders of magnitude. As particular result, we prove that the unary unbiased black-box complexity of the OneMax benchmark function class is nln⁡(n)−cn±o(n) for a constant c which is between 0.2539 and 0.2665. This runtime can be achieved with a simple (1+1)-type algorithm using a fitness-dependent mutation strength. When translated into the fixed-budget perspective, our algorithm finds solutions which are roughly 13% closer to the optimum than those of the best previously known algorithms. To prove our results, we formulate several new versions of the variable drift theorems, which also might be of independent interest.
Document type :
Journal articles
Complete list of metadatas

https://hal.sorbonne-universite.fr/hal-02175769
Contributor : Carola Doerr <>
Submitted on : Saturday, July 6, 2019 - 11:08:46 AM
Last modification on : Monday, July 8, 2019 - 2:59:20 PM

Links full text

Identifiers

Citation

Benjamin Doerr, Carola Doerr, Jing Yang. Optimal parameter choices via precise black-box analysis. Theoretical Computer Science, Elsevier, 2019, ⟨10.1016/j.tcs.2019.06.014⟩. ⟨hal-02175769⟩

Share

Metrics

Record views

45