Skip to Main content Skip to Navigation
Conference papers

Fast re-optimization via structural diversity

Abstract : When a problem instance is perturbed by a small modification, one would hope to find a good solution for the new instance by building on a known good solution for the previous one. Via a rigorous mathematical analysis, we show that evolutionary algorithms, despite usually being robust problem solvers, can have unexpected difficulties to solve such re-optimization problems. When started with a random Hamming neighbor of the optimum, the (1+1) evolutionary algorithm takes $\Omega(n^2)$ time to optimize the LeadingOnes benchmark function, which is the same asymptotic optimization time when started in a randomly chosen solution. There is hence no significant advantage from re-optimizing a structurally good solution. We then propose a way to overcome such difficulties. As our mathematical analysis reveals, the reason for this undesired behavior is that during the optimization structurally good solutions can easily be replaced by structurally worse solutions of equal or better fitness. We propose a simple diversity mechanism that prevents this behavior, thereby reducing the re-optimization time for LeadingOnes to $O(\gamma\delta n)$, where $\gamma$ is the population size used by the diversity mechanism and $\delta \le \gamma$ the Hamming distance of the new optimum from the previous solution. We show similarly fast re-optimization times for the optimization of linear functions with changing constraints and for the minimum spanning tree problem.
Document type :
Conference papers
Complete list of metadatas

Cited literature [37 references]  Display  Hide  Download
Contributor : Carola Doerr <>
Submitted on : Tuesday, January 14, 2020 - 3:37:43 PM
Last modification on : Friday, January 17, 2020 - 4:43:23 PM


bl Doerr.Doerr.Neumann GECCO 2...
Files produced by the author(s)



Benjamin Doerr, Carola Doerr, Frank Neumann. Fast re-optimization via structural diversity. The Genetic and Evolutionary Computation Conference, Jul 2019, Prague, Czech Republic. pp.233-241, ⟨10.1145/3321707.3321731⟩. ⟨hal-02175763⟩



Record views


Files downloads