Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Evolution of Gaussian Concentration

Abstract : We study the behavior of the Gaussian concentration bound (GCB) under stochastic time evolution. More precisely, in the context of Markovian diffusion processes on $\mathbb{R}^d$ we prove in various settings that if we start the process from an initial probability measure satisfying GCB, then at later times GCB holds, and estimates for the constant are provided. Under additional conditions, we show that GCB holds for the unique invariant measure. This gives a semigroup interpolation method to prove Gaussian concentration for measures which are not available in explicit form. We also consider diffusions ``coming down from infinity'' for which we show that, from any starting measure, at positive times, GCB holds. Finally we consider non-Markovian difussion processes with drift of Ornstein Uhlenbeck type, and general bounded predictable variance.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [16 references]  Display  Hide  Download
Contributor : Jean-René Chazottes <>
Submitted on : Wednesday, July 15, 2020 - 3:00:22 PM
Last modification on : Friday, July 17, 2020 - 5:19:59 AM


Files produced by the author(s)


  • HAL Id : hal-02167399, version 2



J.-R Chazottes, P. Collet, F Redig. Evolution of Gaussian Concentration. 2020. ⟨hal-02167399v2⟩



Record views


Files downloads