Skip to Main content Skip to Navigation
Journal articles

Minimally Modified Gravity: a Hamiltonian Construction

Abstract : Minimally modified gravity theories are modifications of general relativity with two local gravitational degrees of freedom in four dimensions. Their construction relies on the breaking of 4D diffeomorphism invariance keeping however the symmetry under 3D diffeomorphisms. Here, we construct these theories from the Hamiltonian point of view. We start with the phase space of general relativity in the ADM formalism. Then, we find the conditions that the Hamiltonian must satisfy for the theory to propagate (up to) two local gravitational degrees of freedom with the assumptions that the lapse and the shift are not dynamical, and that the theory remains invariant under 3D diffeomorphisms. This construction enables us to recover the well-known “cuscuton” class of scalar-tensor theories in the unitary gauge. We also exhibit a new class of interesting theories, that we dub f(&calH;) theories, where the usual Hamiltonian constraint &calH; of general relativity is replaced by f(&calH;) where f is an arbitrary function.
Complete list of metadatas
Contributor : Inspire Hep <>
Submitted on : Wednesday, May 29, 2019 - 10:34:39 PM
Last modification on : Wednesday, August 5, 2020 - 3:44:00 AM

Links full text




Shinji Mukohyama, Karim Noui. Minimally Modified Gravity: a Hamiltonian Construction. JCAP, 2019, 07, pp.049. ⟨10.1088/1475-7516/2019/07/049⟩. ⟨hal-02144206⟩



Record views