Skip to Main content Skip to Navigation
Journal articles

Non-integrable dimers: Universal fluctuations of tilted height profiles

Abstract : We study a class of close-packed dimer models on the square lattice, in the presence of small but extensive perturbations that make them non-determinantal. Examples include the 6-vertex model close to the free-fermion point, and the dimer model with plaquette interaction previously analyzed in \cite{A,AL,GMT17a,GMT17b}. By tuning the edge weights, we can impose a non-zero average tilt for the height function, so that the considered models are in general not symmetric under discrete rotations and reflections. In the determinantal case, height fluctuations in the massless (or `liquid') phase scale to a Gaussian log-correlated field and their amplitude is a universal constant, independent of the tilt. When the perturbation strength $\lambda$ is sufficiently small we prove, by fermionic constructive Renormalization Group methods, that log-correlations survive, with amplitude $A$ that, generically, depends non-trivially and non-universally on $\lambda$ and on the tilt. On the other hand, $A$ satisfies a universal scaling relation (`Haldane' or `Kadanoff' relation), saying that it equals the anomalous exponent of the dimer-dimer correlation.
Document type :
Journal articles
Complete list of metadata
Contributor : Fabio Toninelli Connect in order to contact the contributor
Submitted on : Wednesday, April 17, 2019 - 10:41:42 AM
Last modification on : Tuesday, January 4, 2022 - 5:46:31 AM

Links full text



Alessandro Giuliani, Vieri Mastropietro, Fabio Toninelli. Non-integrable dimers: Universal fluctuations of tilted height profiles. Communications in Mathematical Physics, Springer Verlag, 2020, 377 (3), pp.1883-1959. ⟨10.1007/s00220-020-03760-x⟩. ⟨hal-02102242⟩



Record views