Experiments on fragmentation and thermo-chemical exchanges during planetary core formation - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physics of the Earth and Planetary Interiors Année : 2018

Experiments on fragmentation and thermo-chemical exchanges during planetary core formation

Résumé

The initial thermo-chemical state of telluric planets was largely controlled by mixing following the collision of differentiated proto-planets. Up to now, most models of planet formation simply assume that the iron core of the impactors immediately broke up to form an "iron rain" within a large-scale magma ocean, leading to the rapid equilibration of the whole metal with the whole mantle. Only recent studies have focused on resolving the fluid mechanics of the problem, with the aim to define more relevant diffusion-advection models of thermal and chemical exchanges within and between the two fluids. Furthermore, the influence of the viscosity ratio on this dynamical process is generally neglected, whilst it is known to play a role in the breakup of the initial iron diapirs and in the shape of the resulting droplets. Here we report the results of analog laboratory experiments matching the dynamical regime of the geophysical configuration. High speed video recording allows us to describe and characterize the fluid dynamics of the system, and temperature measurements allow us to quantify the diffusive exchanges integrated during the fall of the liquid metal. We find that the early representation of this flow as an iron rain is far from the experimental results. The equilibration coefficient at a given depth depends both on the initial size of the metal diapir Preprint submitted to Physics of the Earth and Planetary Interiors May 26, 2017 and on the viscosity of the ambient fluid, whereas the falling speed is only controlled by the initial size. Various scalings for the diffusive exchanges coming from the literature are tested. We find good agreement with the turbulent thermal model developed by Deguen et al. (2014).
Fichier principal
Vignette du fichier
Wacheul_Final_Version.pdf (1.09 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02068313 , version 1 (14-03-2019)

Identifiants

Citer

Jean-Baptiste Wacheul, Michael Le Bars. Experiments on fragmentation and thermo-chemical exchanges during planetary core formation. Physics of the Earth and Planetary Interiors, 2018, 276, pp.134-144. ⟨10.1016/j.pepi.2017.05.018⟩. ⟨hal-02068313⟩
104 Consultations
179 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More