Skip to Main content Skip to Navigation
Journal articles

Oxidation kinetics of n-nonane: Measurements and modeling of ignition delay times and product concentrations

Abstract : Oxidation of n-nonane (n-C9H20) under conditions of high dilution (>97% inert) has been studied over a broad range of temperature (530 < T (K) < 1591) and equivalence ratio (0.5, 1.0, 2.0) at pressures near 1 and 10 atm using shock-tube and jet-stirred reactor facilities. Excited-state hydroxyl radical (OH*) time histories were measured using emission spectroscopy of OH behind reflected shock waves from which ignition delay and peak formation times were extracted. Temperature-dependent species concentrations were measured using gas chromatography, FTIR, TCD, and FID of jet-stirred reactor combustion products. Ignition delay times show a strong dependence on equivalence ratio, increasing by a factor of nearly 5 at both 1 and 10.4 atm. An overall ignition delay time correlation was constructed, revealing a pressure dependence of P^^0.48. Experimental data from both facilities were utilized to develop and validate a chemical kinetics mechanism for n-nonane oxidation. Kinetic model predictions of ignition delay time compare well, particularly for the lean and stoichiometric mixtures. Jet-stirred reactor data show excellent overall agreement with major species, as well as alkanes and alkenes present in the combustion products. Alkenes up to C9 were produced from n-nonane oxidation and ethylene, a dominant product of n-nonane thermal decomposition, is identified as the most abundant among them. The present study provides an extensive series of fundamental measurements on n-nonane oxidation, resulting in the formulation of a mechanism used to describe and predict associated reaction kinetics.
Complete list of metadatas
Contributor : Philippe Dagaut <>
Submitted on : Friday, February 15, 2019 - 9:36:55 AM
Last modification on : Thursday, August 22, 2019 - 4:50:27 PM




B. Rotavera, P. Diévart, C. Togbé, P. Dagaut, E.L. Petersen. Oxidation kinetics of n-nonane: Measurements and modeling of ignition delay times and product concentrations. Proceedings of the Combustion Institute, Elsevier, 2011, 33 (1), pp.175-183. ⟨10.1016/j.proci.2010.05.055⟩. ⟨hal-02020150⟩



Record views