Free Heyting Algebra Endomorphisms: Ruitenburg's Theorem and Beyond

Abstract : Ruitenburg's Theorem says that every endomorphism f of a finitely generated free Heyting algebra is ultimately periodic if f fixes all the generators but one. More precisely, there is N ≥ 0 such that f N +2 = f N , thus the period equals 2. We give a semantic proof of this theorem, using duality techniques and bounded bisimulation ranks. By the same techniques, we tackle investigation of arbitrary endomorphisms between free algebras. We show that they are not, in general, ultimately periodic. Yet, when they are (e.g. in the case of locally finite subvarieties), the period can be explicitly bounded as function of the cardinality of the set of generators.
Type de document :
Pré-publication, Document de travail
2019
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01969235
Contributeur : Luigi Santocanale <>
Soumis le : jeudi 3 janvier 2019 - 19:33:27
Dernière modification le : samedi 5 janvier 2019 - 01:20:17

Fichiers

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01969235, version 1
  • ARXIV : 1901.01252

Collections

Citation

Silvio Ghilardi, Luigi Santocanale. Free Heyting Algebra Endomorphisms: Ruitenburg's Theorem and Beyond. 2019. 〈hal-01969235〉

Partager

Métriques

Consultations de la notice

71

Téléchargements de fichiers

36