Dual filtering in operational and joint spaces for reaching and grasping

Abstract : To study human movement generation, as well as to develop efficient control algorithms for humanoid or dexterous manipulation robots, overcoming the limits and drawbacks of inverse kinematics based methods is needed. Adequate methods must deal with high dimensionality, uncertainty , and must perform in real-time (constraints shared by robots and humans). This paper introduces a Bayesian filtering method, hierarchically applied in the operational and joint spaces to break down the complexity of the problem. The method is validated in simulation on a robotic arm in a cluttered environment, with up to 51 degrees of freedom.
Type de document :
Article dans une revue
Cognitive Processing, Springer Verlag, 2015, 16 (S1), pp.293-297. 〈10.1007/s10339-015-0710-0〉
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01966562
Contributeur : Jean-Charles Quinton <>
Soumis le : vendredi 28 décembre 2018 - 16:11:34
Dernière modification le : jeudi 3 janvier 2019 - 01:16:14

Fichier

2015 - CogProc - Lopez, Quinto...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Léo Pio-Lopez, Jean-Charles Quinton, Youcef Mezouar. Dual filtering in operational and joint spaces for reaching and grasping. Cognitive Processing, Springer Verlag, 2015, 16 (S1), pp.293-297. 〈10.1007/s10339-015-0710-0〉. 〈hal-01966562〉

Partager

Métriques

Consultations de la notice

18

Téléchargements de fichiers

14