Minimal Energy for the Traveling Waves of the Landau--Lifshitz Equation

Abstract : We consider nontrivial finite energy traveling waves for the Landau--Lifshitz equation with easy-plane anisotropy. Our main result is the existence of a minimal energy for these traveling waves, in dimensions two, three, and four. The proof relies on a priori estimates related to the theory of harmonic maps and the connection of the Landau--Lifshitz equation with the kernels appearing in the Gross--Pitaevskii equation.
Document type :
Journal articles
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01951344
Contributor : André de Laire <>
Submitted on : Tuesday, December 11, 2018 - 1:27:46 PM
Last modification on : Friday, April 19, 2019 - 1:30:08 PM

Identifiers

  • HAL Id : hal-01951344, version 1

Données associées

Collections

Citation

André de Laire. Minimal Energy for the Traveling Waves of the Landau--Lifshitz Equation. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2014, 46 (1), pp.96-132. ⟨hal-01951344⟩

Share

Metrics

Record views

28