Magnetotransport in type-enriched single-wall carbon nanotube networks - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Review Materials Année : 2018

Magnetotransport in type-enriched single-wall carbon nanotube networks

Résumé

Single-wall carbon nanotubes (SWCNTs) exhibit a wide range of physical phenomena depending on their chirality. Nanotube networks typically contain a broad mixture of chiralities, which prevents an in-depth understanding of SWCNT ensemble properties. In particular, electronic-type mixing (the simultaneous presence of semiconductor and metallic nanotubes) in SWCNT networks remains the single largest hurdle to developing a comprehensive view of ensemble nanotube electrical transport, a critical step toward their use in optoelectronics. Here, we systematically study temperature-dependent magnetoconductivity (MC) in networks of highly enriched semiconductor and metal SWCNT films. In the semiconductor-enriched network, we observe two-dimensional variable-range hopping conduction from 5 to 290 K. Low-temperature MC measurements reveal a large, negative MC from which we determine the wave-function localization length and Fermi energy density of states. In contrast, the metal-enriched film exhibits positive MC that increases with decreasing temperature, a behavior attributed to two-dimensional weak localization. Using this model, we determine the details of the carrier phase coherence and fit the temperature-dependent conductivity. These extensive measurements on type-enriched SWCNT networks provide insights that pave the way for the use of SWCNTs in solid-state devices.
Fichier principal
Vignette du fichier
PhysRevMaterials.2.116001-accepted.pdf (4.09 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01934983 , version 1 (02-06-2021)

Identifiants

Citer

X. Wang, W. Gao, Xiaojian Li, Q. Zhang, Sébastien Nanot, et al.. Magnetotransport in type-enriched single-wall carbon nanotube networks. Physical Review Materials, 2018, 2, pp.116001. ⟨10.1103/PhysRevMaterials.2.116001⟩. ⟨hal-01934983⟩
31 Consultations
30 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More