PATCH REDUNDANCY IN IMAGES: A STATISTICAL TESTING FRAMEWORK AND SOME APPLICATIONS

Abstract : In this work we introduce a statistical framework in order to analyze the spatial redundancy in natural images. This notion of spatial redundancy must be defined locally and thus we give some examples of functions (auto-similarity and template similarity) which, given one or two images, computes a similarity measurement between patches. Two patches are said to be similar if the similarity measurement is small enough. To derive a criterion for taking a decision on the similarity between two patches we present an a contrario model. Namely, two patches are said to be similar if the associated similarity measurement is unlikely to happen in a background model. Choosing Gaussian random fields as background models we derive non-asymptotic expressions for the probability distribution function of similarity measurements. We introduce a fast algorithm in order to assess redundancy in natural images and present applications in denoising, periodicity analysis and texture ranking.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01931733
Contributeur : Agnès Desolneux <>
Soumis le : jeudi 22 novembre 2018 - 21:39:07
Dernière modification le : mercredi 5 décembre 2018 - 01:14:08

Fichier

main_preprint_patch.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01931733, version 1

Citation

Valentin De Bortoli, Agnès Desolneux, Bruno Galerne, Arthur Leclaire. PATCH REDUNDANCY IN IMAGES: A STATISTICAL TESTING FRAMEWORK AND SOME APPLICATIONS. 2018. 〈hal-01931733〉

Partager

Métriques

Consultations de la notice

28

Téléchargements de fichiers

20