Discovering Tight Space-Time Sequences

Abstract : The problem of discovering spatiotemporal sequential patterns affects a broad range of applications. Many initiatives find sequences constrained by space and time. This paper addresses an appealing new challenge for this domain: find tight space-time sequences, i.e., find within the same process: i) frequent sequences constrained in space and time that may not be frequent in the entire dataset and ii) the time interval and space range where these sequences are frequent. The discovery of such patterns along with their constraints may lead to extract valuable knowledge that can remain hidden using traditional methods since their support is extremely low over the entire dataset. We introduce a new Spatio-Temporal Sequence Miner (ST SM) algorithm to discover tight space-time sequences. We evaluate ST SM using a proof of concept use case. When compared with general spatial-time sequence mining algorithms (GST SM), ST SM allows for new insights by detecting maximal space-time areas where each pattern is frequent. To the best of our knowledge, this is the first solution to tackle the problem of identifying tight space-time sequences.
Type de document :
Communication dans un congrès
DaWaK: Data Warehousing and Knowledge Discovery, Sep 2018, Regensburg, Germany. 20th International Conference on Big Data Analytics and Knowledge Discovery, LNCS (11031), pp.247-257, 2018, 〈10.1007/978-3-319-98539-8_19〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01925965
Contributeur : Florent Masseglia <>
Soumis le : dimanche 18 novembre 2018 - 16:42:11
Dernière modification le : mardi 4 décembre 2018 - 14:32:05

Fichier

ogasawara_dawak.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Riccardo Campisano, Heraldo Borges, Fábio Porto, Fabio Perosi, Esther Pacitti, et al.. Discovering Tight Space-Time Sequences. DaWaK: Data Warehousing and Knowledge Discovery, Sep 2018, Regensburg, Germany. 20th International Conference on Big Data Analytics and Knowledge Discovery, LNCS (11031), pp.247-257, 2018, 〈10.1007/978-3-319-98539-8_19〉. 〈hal-01925965〉

Partager

Métriques

Consultations de la notice

35

Téléchargements de fichiers

12