A non-local dual-domain approach to cartoon and texture decomposition

Frédéric Sur 1
1 MAGRIT - Visual Augmentation of Complex Environments
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : This paper addresses the problem of cartoon and texture decomposition. Microtextures being characterized by their power spectrum, we propose to extract cartoon and texture components from the information provided by the power spectrum of image patches. The contribution of texture to the spectrum of a patch is detected as statistically significant spectral components with respect to a null hypothesis modeling the power spectrum of a non-textured patch. The null-hypothesis model is built upon a coarse cartoon representation obtained by a basic yet fast filtering algorithm of the literature. Hence the term ``dual domain'': the coarse decomposition is obtained in the spatial domain and is an input of the proposed spectral approach. The statistical model is also built upon the power spectrum of patches with similar textures across the image. The proposed approach therefore falls within the family of non-local methods. Experimental results are shown in various application areas, including canvas pattern removal in fine arts painting, or periodic noise removal in remote sensing imaging.
Type de document :
Article dans une revue
IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2019, 28 (4), pp.1882-1894. 〈10.1109/TIP.2018.2881906〉
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01925890
Contributeur : Frédéric Sur <>
Soumis le : mardi 27 novembre 2018 - 09:50:06
Dernière modification le : mardi 18 décembre 2018 - 16:18:26
Document(s) archivé(s) le : jeudi 28 février 2019 - 12:50:23

Fichier

sur19nonlocal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Frédéric Sur. A non-local dual-domain approach to cartoon and texture decomposition. IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2019, 28 (4), pp.1882-1894. 〈10.1109/TIP.2018.2881906〉. 〈hal-01925890〉

Partager

Métriques

Consultations de la notice

159

Téléchargements de fichiers

60