Defining integer valued functions in rings of continuous definable functions over a topological field

Abstract : Let K be an expansion of either an ordered field or a valued field. Given a definable set X ⊆ Km let C(X) be the ring of continuous definable functions from X to K. Under very mild assumptions on the geometry of X and on the structure K, in particular when K is o-minimal or P-minimal, or an expansion of a local field, we prove that the ring of integers Z is interpretable in C(X). If K is o-minimal and X is definably connected of pure dimension 2, then C(X) defines the subring Z. If K is P-minimal and X has no isolated points, then there is a discrete ring Z contained in K and naturally isomorphic to Z, such that the ring of functions f ∈ C(X) which take values in Z is definable in C(X).
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01907668
Contributeur : Luck Darnière <>
Soumis le : lundi 29 octobre 2018 - 13:12:21
Dernière modification le : mercredi 31 octobre 2018 - 01:08:21

Fichiers

definingZ.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01907668, version 1
  • ARXIV : 1810.12562

Collections

Citation

Luck Darnière, Marcus Tressl. Defining integer valued functions in rings of continuous definable functions over a topological field. 2018. 〈hal-01907668〉

Partager

Métriques