Online Shape Estimation based on Tactile Sensing and Deformation Modeling for Robot Manipulation

Abstract : Precise robot manipulation of deformable objects requires an accurate and fast estimation of their shape as they deform. So far, visual sensing has been mostly used to solve this issue, but vision sensors are sensitive to occlusions, which might be inevitable when manipulating an object with robot. To address this issue, we present a modular pipeline to track the shape of a soft object in an online manner by coupling tactile sensing with a deformation model. Using a model of a tactile sensor, we compute the magnitude and location of a contact force and apply it as an external force to the deformation model. The deformation model then updates the nodal positions of a mesh that describes the shape of the deformable object. The proposed sensor model and pipeline, are evaluated using a Shadow Dexterous Hand equipped with BioTac sensors on its fingertips and an RGB-D sensor.
Type de document :
Communication dans un congrès
IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2018, Madrid, Spain. 〈https://www.iros2018.org/〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01905794
Contributeur : Jose Manuel Sanchez Loza <>
Soumis le : vendredi 26 octobre 2018 - 10:50:17
Dernière modification le : samedi 10 novembre 2018 - 01:09:20

Fichier

iros2018_shape_estimation.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01905794, version 1

Citation

Jose Manuel Sanchez Loza, Carlos Mateo, Juan Corrales, Belhassen-Chedli Bouzgarrou, Youcef Mezouar. Online Shape Estimation based on Tactile Sensing and Deformation Modeling for Robot Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2018, Madrid, Spain. 〈https://www.iros2018.org/〉. 〈hal-01905794〉

Partager