REVISITING THE MODULI SPACE OF SEMISTABLE G-BUNDLES OVER ELLIPTIC CURVES

Abstract : We show that the moduli space of semistable G-bundles on an elliptic curve for a reductive group G is isomorphic to a power of the elliptic curve modulo a certain Weyl group which depend on the topological type of the bundle. This generalizes a result of Laszlo to arbitrary connected components and recovers the global description of the moduli space due to Friedman-Morgan-Witten and Schweigert. The proof is entirely in the realm of algebraic geometry and works in arbitrary characteristic.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01904421
Contributeur : Dragos Fratila <>
Soumis le : mercredi 24 octobre 2018 - 20:39:27
Dernière modification le : mercredi 7 novembre 2018 - 01:17:02

Fichier

moduli_Gbdles_ellipticv7_submi...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01904421, version 1

Collections

Citation

Dragoș Fratila. REVISITING THE MODULI SPACE OF SEMISTABLE G-BUNDLES OVER ELLIPTIC CURVES. 2018. 〈hal-01904421〉

Partager