A Kramers' type law for self-interacting diffusions

Pierre Del Moral 1 Aline Kurtzmann 2 Julian Tugaut 3
1 CQFD - Quality control and dynamic reliability
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
3 PSPM - Probabilités, statistique, physique mathématique
ICJ - Institut Camille Jordan [Villeurbanne]
Abstract : We study the exit time of a domain for a self-interacting diffusion, where the Brownian motion is replaced by σBt for a constant σ. We first show that the rate of convergence previously obtained for a convex confinment potential V and a convex interaction potential does not depend on σ. Then, we show a Kramers' type law for the first exit-time from a domain (satisfying classical hypotheses).
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [1 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01901145
Contributor : Julian Tugaut <>
Submitted on : Monday, October 22, 2018 - 5:03:55 PM
Last modification on : Friday, April 19, 2019 - 4:55:32 PM
Document(s) archivé(s) le : Wednesday, January 23, 2019 - 5:17:26 PM

File

DMKT2018-10-12.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01901145, version 1

Citation

Pierre Del Moral, Aline Kurtzmann, Julian Tugaut. A Kramers' type law for self-interacting diffusions. 2018. ⟨hal-01901145⟩

Share

Metrics

Record views

44

Files downloads

37