Formation of porous crystals via viscoelastic phase separation - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Materials Année : 2017

Formation of porous crystals via viscoelastic phase separation

Résumé

Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol , we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganised network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation , and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monoatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation , but fast enough to prevent immediate vitrification. This provides a novel pathway to form nano-porous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.
Fichier principal
Vignette du fichier
ArXiV.pdf (3.07 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01901137 , version 1 (22-10-2018)

Identifiants

Citer

Hideyo Tsurusawa, John Russo, Mathieu Leocmach, Hajime Tanaka. Formation of porous crystals via viscoelastic phase separation. Nature Materials, 2017, 16 (10), pp.1022-1028. ⟨10.1038/nmat4945⟩. ⟨hal-01901137⟩
23 Consultations
80 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More