On Kernel Derivative Approximation with Random Fourier Features

Abstract : Random Fourier features (RFF) represent one of the most popular and wide-spread techniques in machine learning to scale up kernel algorithms. Despite the numerous successful applications of RFFs, unfortunately, quite little is understood theoretically on their optimality and limitations of their performance. Only recently, precise statistical-computational trade-offs have been established for RFFs in the approximation of kernel values, kernel ridge regression, kernel PCA and SVM classification. Our goal is to spark the investigation of optimality of RFF-based approximations in tasks involving not only function values but derivatives, which naturally lead to optimization problems with kernel derivatives. Particularly, in this paper, we focus on the approximation quality of RFFs for kernel derivatives and prove that the existing finite-sample guarantees can be improved exponentially in terms of the domain where they hold, using recent tools from unbounded empirical process theory. Our result implies that the same approximation guarantee is attainable for kernel derivatives using RFF as achieved for kernel values.
Type de document :
Communication dans un congrès
International Conference on Artificial Intelligence and Statistics, Apr 2019, Naha, Japan
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01897996
Contributeur : Zoltan Szabo <>
Soumis le : samedi 9 février 2019 - 21:27:00
Dernière modification le : jeudi 28 février 2019 - 01:18:53

Fichier

szabo19kernel.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01897996, version 3

Citation

Zoltán Szabó, Bharath Sriperumbudur. On Kernel Derivative Approximation with Random Fourier Features. International Conference on Artificial Intelligence and Statistics, Apr 2019, Naha, Japan. 〈hal-01897996v3〉

Partager

Métriques

Consultations de la notice

7

Téléchargements de fichiers

6