Pigeons do not jump high

Abstract : The infinite pigeonhole principle for 2-partitions asserts the existence, for every set $A$, of an infinite subset of $A$ or of its complement. In this paper, we develop a new notion of forcing enabling a fine analysis of the computability-theoretic features of the pigeonhole principle. We deduce various consequences, such as the existence, for every set $A$, of an infinite subset of it or its complement of non-high degree. We also prove that every $\Delta^0_3$ set has an infinite low${}_3$ solution and give a simpler proof of Liu's theorem that every set has an infinite subset in it or its complement of non-PA degree.
Type de document :
Pré-publication, Document de travail
20 pages. 2018
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01888793
Contributeur : Ludovic Patey <>
Soumis le : vendredi 5 octobre 2018 - 12:49:46
Dernière modification le : mercredi 14 novembre 2018 - 22:36:56

Fichier

pigeons-jump.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01888793, version 1
  • ARXIV : 1803.09771

Citation

Benoit Monin, Ludovic Patey. Pigeons do not jump high. 20 pages. 2018. 〈hal-01888793〉

Partager

Métriques

Consultations de la notice

25

Téléchargements de fichiers

4