Collet, Eckmann and the bifurcation measure

Abstract : The moduli space M_d of degree d ≥ 2 rational maps can naturally be endowed with a measure µ_bif detecting maximal bifurcations, called the bifurcation measure. We prove that the support of the bifurcation measure µ_bif has positive Lebesgue measure. To do so, we establish a general sufficient condition for the conjugacy class of a rational map to belong to the support of µ_bif and we exhibit a large set of Collet-Eckmann rational maps which satisfy this condition. As a consequence, we get a set of Collet-Eckmann rational maps of positive Lebesgue measure which are approximated by hyperbolic rational maps.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01888305
Contributeur : Thomas Gauthier <>
Soumis le : jeudi 4 octobre 2018 - 21:09:05
Dernière modification le : dimanche 7 octobre 2018 - 01:09:21

Fichier

Lebesgue-final-utf8.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01888305, version 1
  • ARXIV : 1705.06114

Citation

Matthieu Astorg, Thomas Gauthier, Nicolae Mihalache, Gabriel Vigny. Collet, Eckmann and the bifurcation measure. 2018. 〈hal-01888305〉

Partager

Métriques

Consultations de la notice

38

Téléchargements de fichiers

13