Spectral analysis of the complex cubic oscillator

Abstract :

Using the `exact semiclassical analysis', we study the spectrum of a one-parameter family of complex cubic oscillators. The PT-invariance property of the complex Hamiltonians and the reality property of the spectrum are discussed. Analytic continuations of the spectrum in the complex parameter and their connections with the resonance problem for the real cubic oscillator are investigated. The global analytic structure of the spectrum yields a branch point structure similar to the multivalued analytic structure discovered by Bender and Wu for the quartic oscillator.

Type de document :
Article dans une revue
Journal of Physics A: Mathematical and General , IOP Publishing, 2000, 33 (48), pp.8771-8796. 〈10.1088/0305-4470/33/48/314〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01886530
Contributeur : Okina Université d'Angers <>
Soumis le : mardi 2 octobre 2018 - 20:37:01
Dernière modification le : mardi 30 octobre 2018 - 14:09:27

Lien texte intégral

Identifiants

Citation

Eric Delabaere, Duc Trinh. Spectral analysis of the complex cubic oscillator. Journal of Physics A: Mathematical and General , IOP Publishing, 2000, 33 (48), pp.8771-8796. 〈10.1088/0305-4470/33/48/314〉. 〈hal-01886530〉

Partager

Métriques

Consultations de la notice

23