Skip to Main content Skip to Navigation
Journal articles

Optimal design of multi-channel microreactor for uniform residence time distribution

Abstract : Multi-channel microreactors can be used for various applications that require chemical or electrochemical reactions in either liquid, gaseous or multi phase. For an optimal control of the chemical reactions, one key parameter for the design of such microreactors is the residence time distribution of the fluid, which should be as uniform as possible in the series of microchannels that make up the core of the reactor. Based on simplifying assumptions, an analytical model is proposed for optimizing the design of the collecting and distributing channels which supply the series of rectangular microchannels of the reactor, in the case of liquid flows. The accuracy of this analytical approach is discussed after comparison with CFD simulations and hybrid analytical-CFD calculations that allow an improved refinement of the meshing in the most complex zones of the flow. The analytical model is then extended to the case of microchannels with other cross-sections (trapezoidal or circular segment) and to gaseous flows, in the continuum and slip flow regimes. In the latter case, the model is based on second-order slip flow boundary conditions, and takes into account the compressibility as well as the rarefaction of the gas flow.
Document type :
Journal articles
Complete list of metadata
Contributor : Stéphane Colin <>
Submitted on : Tuesday, September 25, 2018 - 4:09:10 PM
Last modification on : Saturday, February 6, 2021 - 11:10:05 AM

Links full text



Cyril Renault, Stéphane Colin, Stéphane Orieux, Patrick Cognet, Théodore Tzedakis. Optimal design of multi-channel microreactor for uniform residence time distribution. Microsystem Technologies, Springer Verlag, 2012, 18 (2), pp.209 - 223. ⟨10.1007/s00542-011-1334-7⟩. ⟨hal-01881285⟩



Record views