L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific Journal of Mathematics, vol.16, issue.1, pp.1-3, 1966.
DOI : 10.2140/pjm.1966.16.1

URL : http://msp.org/pjm/1966/16-1/pjm-v16-n1-p01-s.pdf

P. Audze and V. Eglais, New approach for planning out of experiments, Problems of Dynamics and Strengths, vol.35, pp.104-107, 1977.

D. Böhning, Numerical estimation of a probability measure, Journal of Statistical Planning and Inference, vol.11, issue.1, pp.57-69, 1985.
DOI : 10.1016/0378-3758(85)90024-2

D. Böhning, A vertex-exchange-method in D-optimal design theory, Metrika, vol.34, issue.1, pp.337-347, 1986.
DOI : 10.1007/978-94-009-5912-5

J. Conway and N. Sloane, Sphere Packings, Lattices and Groups, 1999.

V. Fedorov, Theory of Optimal Experiments, 1972.

D. Hardin and E. Saff, Discretizing manifolds via minimum energy points, Notices of the AMS, vol.51, issue.10, pp.1186-1194, 2004.

M. Johnson, L. Moore, and D. Ylvisaker, Minimax and maximin distance designs, Journal of Statistical Planning and Inference, vol.26, issue.2, pp.131-148, 1990.
DOI : 10.1016/0378-3758(90)90122-B

N. Landkof, Foundations of Modern Potential Theory, 1972.
DOI : 10.1007/978-3-642-65183-0

I. Molchanov and S. Zuyev, Variational Calculus in the Space of Measures and Optimal Design, pp.79-90, 2000.
DOI : 10.1007/978-1-4757-3419-5_8

I. Molchanov and S. Zuyev, Steepest descent algorithm in a space of measures, Statistics and Computing, vol.12, issue.2, pp.115-123, 2002.
DOI : 10.1023/A:1014878317736

M. Morris and T. Mitchell, Exploratory designs for computational experiments, Journal of Statistical Planning and Inference, vol.43, issue.3, pp.381-402, 1995.
DOI : 10.1016/0378-3758(94)00035-T

URL : https://www.osti.gov/servlets/purl/7192422

G. Nemhauser, L. Wolsey, and M. Fisher, An analysis of approximations for maximizing submodular set functions???I, Mathematical Programming, vol.16, issue.1, pp.265-294, 1978.
DOI : 10.1007/BF01588971

H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, 1992.
DOI : 10.1137/1.9781611970081

L. Pronzato, A delimitation of the support of optimal designs for Kiefer???s -class of criteria, Statistics & Probability Letters, vol.83, issue.12, pp.2721-2728, 2013.
DOI : 10.1016/j.spl.2013.09.009

L. Pronzato, Minimax and maximin space-filling designs: some properties and methods for construction, Journal de la Société Française de Statistique, vol.158, issue.1, pp.7-36, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01496712

L. Pronzato and W. Müller, Design of computer experiments: space filling and beyond, Statistics and Computing, vol.44, issue.1, pp.681-701, 2012.
DOI : 10.1007/BF00048668

URL : https://hal.archives-ouvertes.fr/hal-00685876

L. Pronzato and A. Pázman, Design of Experiments in Nonlinear Models Asymptotic Normality, Optimality Criteria and Small-Sample Properties, LNS, vol.212, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00879984

L. Pronzato, H. Wynn, and A. Zhigljavsky, Extremal measures maximizing functionals based on simplicial volumes, Statistical Papers, vol.105, issue.491, pp.1059-1075, 2016.
DOI : 10.1198/jasa.2010.tm09467

URL : https://hal.archives-ouvertes.fr/hal-01308116

J. Royle and D. Nychka, An algorithm for the construction of spatial coverage designs with implementation in SPLUS, Computers & Geosciences, vol.24, issue.5, pp.479-488, 1998.
DOI : 10.1016/S0098-3004(98)00020-X

H. Wynn, The Sequential Generation of $D$-Optimum Experimental Designs, The Annals of Mathematical Statistics, vol.41, issue.5, pp.1655-1664, 1970.
DOI : 10.1214/aoms/1177696809

URL : http://doi.org/10.1214/aoms/1177696809

Y. Yu, Monotonic convergence of a general algorithm for computing optimal designs, The Annals of Statistics, vol.38, issue.3, pp.1593-1606, 2010.
DOI : 10.1214/09-AOS761

URL : http://doi.org/10.1214/09-aos761