Extremal measures maximizing functionals based on simplicial volumes

Abstract : We consider functionals measuring the dispersion of a d-dimensional distribution which are based on the volumes of simplices of dimension k ≤ d formed by k + 1 independent copies and raised to some power δ. We study properties of extremal measures that maximize these functionals. In particular, for positive δ we characterize their support and for negative δ we establish connection with potential theory and motivate the application to space-filling design for computer experiments. Several illustrative examples are presented.
Type de document :
Article dans une revue
Statistical Papers, Springer Verlag, 2016, <10.1007/s00362-016-0767-6>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01308116
Contributeur : Luc Pronzato <>
Soumis le : mercredi 27 avril 2016 - 11:29:50
Dernière modification le : jeudi 28 avril 2016 - 01:06:16
Document(s) archivé(s) le : jeudi 28 juillet 2016 - 10:25:35

Fichier

Stat_Papers.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Relations

Citation

Luc Pronzato, Henry Wynn, Anatoly Zhigljavsky. Extremal measures maximizing functionals based on simplicial volumes. Statistical Papers, Springer Verlag, 2016, <10.1007/s00362-016-0767-6>. <hal-01308116>

Partager

Métriques

Consultations de
la notice

81

Téléchargements du document

30