BAYESIAN QUADRATURE AND ENERGY MINIMIZATION FOR SPACE-FILLING DESIGN

Abstract : A standard objective in computer experiments is to approximate the behaviour of an unknown function on a compact domain from a few evaluations inside the domain. When little is known about the function, space-filling design is advisable: typically, points of evaluation spread out across the available space are obtained by minimizing a geometrical (for instance, covering radius) or a discrepancy criterion measuring distance to uniformity. The paper investigates connections between design for integration (quadrature design), construction of the (continuous) BLUE for the location model, space-filling design, and minimization of energy (kernel discrepancy) for signed measures. Integrally strictly positive definite kernels define strictly convex energy functionals, with an equivalence between the notions of potential and directional derivative, showing the strong relation between discrepancy minimization and more traditional design of optimal experiments. In particular, kernel herding algorithms, which are special instances of vertex-direction methods used in optimal design, can be applied to the construction of point sequences with suitable space-filling properties.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01864076
Contributeur : Luc Pronzato <>
Soumis le : vendredi 31 août 2018 - 09:35:10
Dernière modification le : lundi 5 novembre 2018 - 15:52:02
Document(s) archivé(s) le : samedi 1 décembre 2018 - 12:20:54

Fichiers

LPAZ-Bayesian-Q_SIAM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01864076, version 1
  • ARXIV : 1808.10722

Collections

Citation

Luc Pronzato, Anatoly Zhigljavsky. BAYESIAN QUADRATURE AND ENERGY MINIMIZATION FOR SPACE-FILLING DESIGN. 2018. 〈hal-01864076〉

Partager

Métriques

Consultations de la notice

92

Téléchargements de fichiers

48