Black holes and higher depth mock modular forms

Abstract : By enforcing invariance under S-duality in type IIB string theory compactified on a Calabi-Yau threefold, we derive modular properties of the gene rating function of BPS degeneracies of D4-D2-D0 black holes in type IIA string theory compactified on the same space. Mathematically, these BPS degeneracies are the generalized Donaldson-Thomas invariants counting coherent sheaves with support on a divisor $\cal D$ , at the large volume attractor point. For $\cal D$ irreducible, this function is closely related to the elliptic genus of the superconformal field theory obtained by wrapping M5-brane on $\cal D$ and is therefore known to be modular. Instead, when $\cal D$ is the sum of $n$ irreducible divisors ${\cal D}_i$, we show that the generating function acquires a modular anomaly. We characterize this anomaly for arbitrary $n$ by providing an explicit expression for a non-holomorphic modular completion in terms of generalized error functions. As a result, the generating function turns out to be a (mixed) mock modular form of depth $n−1$.
Type de document :
Pré-publication, Document de travail
L2C:18-112. 41+30 pages, 11 figures. 2018
Liste complète des métadonnées
Contributeur : L2c Aigle <>
Soumis le : mardi 28 août 2018 - 15:21:56
Dernière modification le : samedi 23 mars 2019 - 01:39:31
Document(s) archivé(s) le : jeudi 29 novembre 2018 - 17:35:38


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01852413, version 2
  • ARXIV : 1808.08479


Sergei Alexandrov, Boris Pioline. Black holes and higher depth mock modular forms. L2C:18-112. 41+30 pages, 11 figures. 2018. 〈hal-01852413v2〉



Consultations de la notice


Téléchargements de fichiers