Parameter-Multiscale PGD Methods for High Dimensional Parametric Spaces

Abstract : Model reduction techniques such as Proper Generalized Decomposition (PGD) are decision-making tools which are about to revolutionize many domains. Unfortunately, their calculation remains problematic for problems involving many parameters, for which one can invoke the " curse of dimensionality ". This works proposes a tentative answer to this challenge in solid mechanics by the so-called " parameter-multiscale PGD ". This work is based on the classical PGD, a model reduction technique using separated variable representations to approximate high dimensional spaces. The method, introduced in [1], uses the physics of the problem to built a more structured representation. It is based on the Saint-Venant's Principle which highlights two different levels of parametric influence, which leads us to introduce a multiscale description of the parameters to separate a " macro " and a " micro " scale. To implement this " parameter-multiscale " vision, a completely discontinuous spacial approximation is needed. Thus, we use the Weak-Trefftz Discontinuous Method used in [2] for the calculation of " medium frequency " phenomena. Discontinuous spatial methods are rarely implemented in industrial solid mechanics software, thus, a non-intrusive version of the algorithm, compatible with classical finite element discretization, has been introduced. On different academic examples, we can show that the computation of the algorithm on a 3D linear elastic problem up to the second iteration leads to very small errors. That is done for cases with more than a thousand parameters [3]. REFERENCES [1] Ladevèze, P and Paillet, Ch and Néron, D, Extended-PGD Model Reduction for Nonlinear [3] Paillet, Ch, and Néron, D, and Ladevèze, P, A door to model reduction in high-dimensional parameter space, Comptes Rendus de l'Académie des Sciences, Mécanique, in publication (2018)
Type de document :
Communication dans un congrès
6th European Conference on Computational Mechanics (ECCM 6), Jun 2018, Glasgow, United Kingdom
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01833547
Contributeur : Charles Paillet <>
Soumis le : lundi 9 juillet 2018 - 17:14:46
Dernière modification le : samedi 21 juillet 2018 - 01:12:09
Document(s) archivé(s) le : mardi 2 octobre 2018 - 08:11:07

Fichier

a651.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01833547, version 1

Citation

Charles Paillet, Pierre Ladevèze, David Néron. Parameter-Multiscale PGD Methods for High Dimensional Parametric Spaces. 6th European Conference on Computational Mechanics (ECCM 6), Jun 2018, Glasgow, United Kingdom. 〈hal-01833547〉

Partager

Métriques

Consultations de la notice

39

Téléchargements de fichiers

56