Gibbs Adsorption Impact on a Nanodroplet Shape: Modification of Young–Laplace Equation - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physical Chemistry B Année : 2018

Gibbs Adsorption Impact on a Nanodroplet Shape: Modification of Young–Laplace Equation

Résumé

We present an efficient technique for the evaluation of the Gibbs adsorption of a liquid on a solid substrate. The behavior of a water nanodroplet on a silicon surface is simulated with molecular dynamics. An external field with varying strength is applied on the system to tune the solid–liquid interfacial contact area. A linear dependence of droplet’s volume as a function of the contact area is observed. We introduce a modified Young−Laplace equation to explain the influence of the Gibbs adsorption on the nanodroplet volume contraction. Fitting of the molecular dynamics results with the analytical approach allows us to evaluate the number of atoms per unit area adsorbed on the substrate, which quantifies the Gibbs adsorption. Thus, a threshold of a droplet size is obtained, for which the impact of the adsorption is crucial. For instance, a water droplet with 5 nm radius has 3% of its molecules adsorbed on silicon substrate, while for droplets less than 1 nm this amount is more than 10%. The presented results could be beneficial for the evaluation of the adsorption impact on the physical–chemical properties of nanohybrid systems with large surface-to-volume ration.
Fichier principal
Vignette du fichier
1707.08844.pdf (1.2 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01832695 , version 1 (19-12-2023)

Identifiants

Citer

Mykola Isaiev, Sergii Burian, Leonid Bulavin, William Chaze, Michel Gradeck, et al.. Gibbs Adsorption Impact on a Nanodroplet Shape: Modification of Young–Laplace Equation. Journal of Physical Chemistry B, 2018, 122 (12), pp.3176 - 3183. ⟨10.1021/acs.jpcb.7b12358⟩. ⟨hal-01832695⟩
69 Consultations
6 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More