Bias-corrected estimation for conditional Pareto-type distributions with random right censoring

Abstract : We consider bias-reduced estimation of the extreme value index in conditional Pareto-type models with random covariates when the response variable is subject to random right censoring. The bias-correction is obtained by fitting the extended Pareto distribution locally to the relative excesses over a high threshold using the maximum likelihood method. Consistency and asymptotic normality of the estimators are established under suitable assumptions. The finite sample behaviour is illustrated with a small simulation experiment and the method is applied to AIDS survival data.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01826112
Contributeur : Armelle Guillou <>
Soumis le : vendredi 29 juin 2018 - 08:56:58
Dernière modification le : mercredi 11 juillet 2018 - 01:26:38

Fichier

censoringlocal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01826112, version 1

Collections

Citation

Yuri Goegebeur, Armelle Guillou, Jing Qin. Bias-corrected estimation for conditional Pareto-type distributions with random right censoring. 2018. 〈hal-01826112〉

Partager

Métriques

Consultations de la notice

28

Téléchargements de fichiers

20