On oracle-type local recovery guarantees in compressed sensing

Abstract : We present improved sampling complexity bounds for stable and robust sparse recovery in compressed sensing. Our unified analysis based on 1 minimization encompasses the case where (i) the measurements are block-structured samples in order to reflect the structured acquisition that is often encountered in applications; (ii) where the signal has an arbitrary structured sparsity, by results depending on its support S. Within this framework and under a random sign assumption, the number of measurements needed by 1 minimization can be shown to be of the same order than the one required by an oracle least-squares estimator. Moreover, these bounds can be minimized by adapting the variable density sampling to a given prior on the signal support and to the coherence of the measurements. We illustrate both numerically and analytically that our results can be successfully applied to recover Haar wavelet coefficients that are sparse in levels from random Fourier measurements in dimension one and two, which can be of particular interest in imaging problems. Finally, a preliminary numerical investigation shows the potential of this theory for devising adaptive sampling strategies in sparse polynomial approximation.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01811947
Contributeur : Claire Boyer <>
Soumis le : lundi 11 juin 2018 - 09:37:51
Dernière modification le : lundi 18 mars 2019 - 16:03:27
Document(s) archivé(s) le : mercredi 12 septembre 2018 - 21:51:16

Fichier

adcock_boyer_brugiapaglia_2018...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01811947, version 1

Citation

Ben Adcock, Claire Boyer, Simone Brugiapaglia. On oracle-type local recovery guarantees in compressed sensing. 2018. 〈hal-01811947〉

Partager

Métriques

Consultations de la notice

85

Téléchargements de fichiers

35