Automatic quality estimation for speech translation using joint ASR and MT features

Abstract : This paper addresses the automatic quality estimation of spoken language translation (SLT). This relatively new task is defined and formalized as a sequence-labeling problem where each word in the SLT hypothesis is tagged as good or bad according to a large feature set. We propose several word confidence estimators (WCE) based on our automatic evaluation of transcription (ASR) quality , translation (MT) quality,or both (combined ASR+MT).This research work is possible because we built a specific corpus, which contains 6.7k utterances comprising the quintuplet: ASR output, verbatim transcript, text translation, speech translation,and post-edition ofthe translation.The conclusion ofour multiple experiments using joint ASR and MT features for WCE is that MT features remain the most influential while ASR features can bring interesting complementary information. In addition, the last part of the paper proposes to disentangle ASR errors and MT errors where each word in the SLT hypothesis is tagged as good,asr_error or mt_error. Robust quality estimators for SLT can be used for re-scoring speech translation graphs or for providing feedback to the user in interactive speech translation or computer-assisted speech-to-text scenarios.
Type de document :
Article dans une revue
Machine Translation, Springer Verlag, 2018
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01807054
Contributeur : Laurent Besacier <>
Soumis le : vendredi 15 juin 2018 - 15:59:07
Dernière modification le : jeudi 11 octobre 2018 - 08:48:03
Document(s) archivé(s) le : lundi 17 septembre 2018 - 11:36:39

Fichier

SLT_MT_Journal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01807054, version 1

Collections

Citation

Ngoc-Tien Le, Benjamin Lecouteux, Laurent Besacier. Automatic quality estimation for speech translation using joint ASR and MT features. Machine Translation, Springer Verlag, 2018. 〈hal-01807054〉

Partager

Métriques

Consultations de la notice

151

Téléchargements de fichiers

66