First and second order rational solutions to the Johnson equation and rogue waves

Abstract : Rational solutions to the Johnson equation are constructed as a quotient of two polynomials in x, y and t depending on several real parameters. We obtain an infinite hierarchy of rational solutions written in terms of polynomials of degrees 2N (N + 1) in x, and t, 4N (N + 1) in y, depending on 2N − 2 real parameters for each positive integer N. We construct explicit expressions of the solutions in the cases N = 1 and N = 2 which are given in the following. We study the evolution of the solutions by constructing the patterns of their modulus in the (x, y) plane, and this for different values of parameters.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01806297
Contributeur : Pierre Gaillard <>
Soumis le : vendredi 1 juin 2018 - 19:18:33
Dernière modification le : vendredi 8 juin 2018 - 14:50:07
Document(s) archivé(s) le : dimanche 2 septembre 2018 - 15:25:02

Fichier

halJO N=1-2V3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01806297, version 1

Collections

Citation

P Gaillard. First and second order rational solutions to the Johnson equation and rogue waves. 2018. 〈hal-01806297〉

Partager

Métriques

Consultations de la notice

175

Téléchargements de fichiers

79