Relevance of musical features for cadence detection

Louis Bigo 1, 2 Laurent Feisthauer 1, 2 Mathieu Giraud 1, 2 Florence Levé 3, 2, 1
2 Algomus
MIS - Modélisation, Information & Systèmes, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : Cadences, as breaths in music, are felt by the listener or studied by the theorist by combining harmony, melody, texture and possibly other musical aspects. We formalize and discuss the significance of 44 cadential features, correlated with the occurrence of cadences in scores. These features describe properties at the arrival beat of a cadence and its surroundings, but also at other onsets heuristically identified to pinpoint chords preparing the cadence. The representation of each beat of the score as a vector of cadential features makes it possible to reformulate cadence detection as a classification task. An SVM classifier was run on two corpora from Bach and Haydn totaling 162 perfect authentic cadences and 70 half cadences. In these corpora, the classifier correctly identified more than 75% of perfect authentic cadences and 50% of half cadences, with low false positive rates. The experiment results are consistent with common knowledge that classification is more complex for half cadences than for authentic cadences.
Type de document :
Communication dans un congrès
International Society for Music Information Retrieval Conference (ISMIR 2018), 2018, Paris, France
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01801060
Contributeur : Mathieu Giraud <>
Soumis le : samedi 16 juin 2018 - 13:25:51
Dernière modification le : mardi 3 juillet 2018 - 11:27:10
Document(s) archivé(s) le : lundi 17 septembre 2018 - 17:38:44

Fichier

2018-ismir-cadences.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01801060, version 1

Collections

Citation

Louis Bigo, Laurent Feisthauer, Mathieu Giraud, Florence Levé. Relevance of musical features for cadence detection. International Society for Music Information Retrieval Conference (ISMIR 2018), 2018, Paris, France. 〈hal-01801060〉

Partager

Métriques

Consultations de la notice

220

Téléchargements de fichiers

71