Multiview Learning of Weighted Majority Vote by Bregman Divergence Minimization

Abstract : We tackle the issue of classifier combinations when observations have multiple views. Our method jointly learns view-specific weighted majority vote classifiers (i.e. for each view) over a set of base voters, and a second weighted majority vote classifier over the set of these view-specific weighted majority vote classifiers. We show that the empirical risk minimization of the final majority vote given a multiview training set can be cast as the minimization of Bregman divergences. This allows us to derive a parallel-update optimization algorithm for learning our multiview model. We empirically study our algorithm with a particular focus on the impact of the training set size on the multiview learning results. The experiments show that our approach is able to overcome the lack of labeled information.
Type de document :
Communication dans un congrès
International Symposium on Intelligent Data Analysis (IDA), Oct 2018, ‘s-Hertogenbosch, Netherlands. 〈https://ida2018.org/〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01799173
Contributeur : Anil Goyal <>
Soumis le : jeudi 24 mai 2018 - 13:58:03
Dernière modification le : jeudi 11 octobre 2018 - 08:48:05
Document(s) archivé(s) le : samedi 25 août 2018 - 14:25:47

Identifiants

  • HAL Id : hal-01799173, version 1
  • ARXIV : 1805.10212

Citation

Anil Goyal, Emilie Morvant, Massih-Reza Amini. Multiview Learning of Weighted Majority Vote by Bregman Divergence Minimization. International Symposium on Intelligent Data Analysis (IDA), Oct 2018, ‘s-Hertogenbosch, Netherlands. 〈https://ida2018.org/〉. 〈hal-01799173〉

Partager

Métriques

Consultations de la notice

104

Téléchargements de fichiers

88