Unsupervised Pedestrian Trajectory Reconstruction from IMU Sensors

Stéphane Derrode 1 Haoyu Li 1, * Lamia Benyoussef 2 Wojciech Pieczynski 3
* Auteur correspondant
1 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
3 TIPIC-SAMOVAR - Traitement de l'Information Pour Images et Communications
SAMOVAR - Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux
Abstract : This paper presents a pedestrian navigation algorithm based on a foot-mounted 9DOF Inertial Measurement Unit, which provides accelerations, angular rates and magnet-ics along 3-axis during the motion. Most of algorithms used worldwide are based on stance detection to reduce the tremendous integration errors, from acceleration to displacement. As the crucial part is to detect stance phase precisely, we introduced a cyclic left-to-right style Hidden Markov Model that is able to appropriately model the periodic nature of signals. Stance detection is then made unsupervised by using a suited learning algorithm. Then, assisted by a simplified error-state Kalman filter, trajectory can be reconstructed. Experimental results show that the proposed algorithm can provide more accurate location, compared to competitive algorithms, w.r.t. ground-truth obtained from OpenStreet Map.
Type de document :
Communication dans un congrès
Traitement et Analyse de l'Information Méthodes et Applications, Apr 2018, Hammamet, Tunisia
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01786223
Contributeur : Stéphane Derrode <>
Soumis le : samedi 5 mai 2018 - 10:05:32
Dernière modification le : vendredi 18 mai 2018 - 01:14:52

Fichier

PedestrianNavig_TAIMA2018.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01786223, version 1

Citation

Stéphane Derrode, Haoyu Li, Lamia Benyoussef, Wojciech Pieczynski. Unsupervised Pedestrian Trajectory Reconstruction from IMU Sensors. Traitement et Analyse de l'Information Méthodes et Applications, Apr 2018, Hammamet, Tunisia. 〈hal-01786223〉

Partager

Métriques

Consultations de la notice

57

Téléchargements de fichiers

36